
The influence of spin-flip scattering on the stability of ferromagnetism in a two-band Hubbard

model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys.: Condens. Matter 11 5811

(http://iopscience.iop.org/0953-8984/11/30/311)

Download details:

IP Address: 171.66.16.214

The article was downloaded on 15/05/2010 at 12:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/11/30
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter11 (1999) 5811–5825. Printed in the UK PII: S0953-8984(99)98605-8

The influence of spin-flip scattering on the stability of
ferromagnetism in a two-band Hubbard model

D Meyer and W Nolting
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Abstract. We investigate the influence of an interband exchange interaction on magnetism in a
two-band Hubbard model. Our main emphasis lies on spin-flip scattering which is often neglected
but is necessary to retain the full rotational symmetry of the Hamiltonian. We find a striking
dependence of the magnetization on the interband exchange coupling constantJ and a substantial
suppression of ferromagnetic order for a large range of values ofJ . The onset of a Ruderman–
Kittel–Kasuya–Yosida-like (RKKY-like) magnetic ordering mechanism is also observed.

1. Introduction

Electronic correlations in the transition metals Fe, Co, Ni still present a major challenge in
condensed matter physics. The stability of ferromagnetism in these materials is not yet fully
understood. Unlike rare-earth systems, these materials have no localized magnetic moments
on ‘atomic’ orbitals. The formation of finite magnetic moments in an itinerant-electron system
has to be explained.

In the past, there have been many attempts to describe transition metals theoretically [1–7].
Virtually all of these are based on a modification of the multi-band Hubbard model [8, 9],
in which only the on-site Coulomb interaction is considered. Recently, the importance of
band degeneracy for correctly describing ferromagnetism has been confirmed by quantum
Monte Carlo (QMC) calculations [10, 11]. But since all calculations mentioned above rely
on some approximations (even the quasi-exact QMC calculation works only on a simplified
Hamiltonian), no complete understanding of the complicated d-band metals is reached yet.
The only way to gain a picture of the complex physics of these systems is to consider partial
problems for which conclusions can be drawn from the available approximate approaches to
fairly oversimplified theoretical models. In this paper, we want to provide another small piece
of the puzzle for the d-band metals.

The investigation of ferromagnetism in the Hubbard model has a long history. In fact, it
was the original intention in introducing this model [8, 12]. It is known for a long time that
for a band filling of one electron above (above or below) half-filling in the limitU → ∞,
the ground state is ferromagnetic for a fcc (sc or bcc) lattice (Nagaoka state) [13, 14]. The
stability of the Nagaoka state was subjected to extensive investigation. For example, in infinite
dimensions (d = ∞), its stability could be proven for a wider range of band fillings and finite
U [15]. Using variational treatments, further limits could be set on its stability on various
lattice structures in two or three dimensions [16]. Related to these statements is the so-called
flat-band magnetism [14,17]. Here, a ferromagnetic ground state could be rigorously proven
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for a dispersionless band structure. Furthermore, for finite temperatures, the existence of a
ferromagnetic phase for certain parameter ranges has been established using dynamical mean-
field theory [18,19]. We therefore believe that the intraband Coulomb interaction as described
by the single-band Hubbard model is one major ingredient for itinerant ferromagnetism.

However, besides the strong on-site Coulomb interaction, transition metal systems are
also characterized by the fivefold degeneracy of the d bands. How does this fact influence
ferromagnetism? In atoms, Hund’s rules will favour a parallel alignment of the spins of
electrons on degenerate levels. That orbital degeneracy will enhance ferromagnetic stability
also in lattice systems appears to be a fact. The general validity of Hund’s rule for the ground
state of a degenerate Hubbard model has indeed been proven [20] (for further statements
concerning ferromagnetism in degenerate Hubbard models, see [14, 21]). Often, this is
the justification for using a simplified interband exchange interaction, which is restricted
to a longitudinal Ising-like spin exchange. The full SU(2)-symmetric interband exchange
interaction can be separated into a longitudinal (Ising) and a transverse (spin-flip) term as
will be shown below (see equation (6)). The longitudinal interaction will try to align the
z-components of the spins due to the energy gain connected with a positive value of the
interband exchange constantJ , thus fulfilling the predictions made by analogy to the atomic
behaviour. This is most obvious in mean-field theory, where the transverse part vanishes, and
a magnetization-dependent band shift is induced by the longitudinal component.

In several recently published papers, more sophisticated calculations for multi-band
Hubbard models were presented, as e.g. in quantum Monte Carlo [10,22], slave-boson [23] or
Gutzwiller variationalansatzmethods [24]. But many of these neglected the transverse part
of the spin exchange with the reasoning explained above. Up to now it is not clear what the
influences of the disregarded terms are.

A valuable contribution to the problem of ferromagnetism in orbitally degenerate Hubbard
models was given in [25], where the authors use an exact-diagonalization method on a restricted
Hilbert space of an (in the limit ofd = ∞) equivalent-impurity model.

The aim of this paper is to investigate the influence of spin-exchange processes originating
from the transverse part of the interband interaction on ferromagnetic stability. We examine a
minimal two-band model which includes those parts of the general Coulomb interaction that
we believe to be the most important for the stability of ferromagnetism [2,3,6,7]. This leads
to the following Hamiltonian:

H = H0 +HU +HJ (1)

where

H0 =
∑
k,m,σ

εm(k)a
†
k,m,σ ak,m,σ (2)

HU = 1

2
U
∑
i,m,σ

ni,m,σ ni,m,−σ (3)

HJ = −1

2
J
∑
i,m

σi,m · σi,m̄. (4)

We use the usual notation for the electron annihilation (creation) operatorsa
(†)
k,m,σ with

wavevectork, band indexm (m̄ being the complementary band of the two-band system),
and spinσ . The free bands are described by the dispersionεm(k); U andJ are combinations
of the appropriate Coulomb matrix elements as introduced e.g. in [2,6,7]. The spin operators
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in HJ are defined as

σσi,m = a†
i,m,σ ai,m,−σ

σ zi,m =
1

2

∑
σ

zσ ni,m,σ
(5)

with zσ = +1 (−1) for spin↑ (spin↓). Within this Hubbard-type Hamiltonian, the intraband
partHU is able to produce ferromagnetism for sufficiently largeU [18, 19, 26]. The second
interaction,HJ , introduces interband exchange processes of two different kinds, as already
mentioned above. This can be seen in the following decomposition ofHJ :

HJ = −1

4
J
∑
i,m,σ

(σ σi,mσ
−σ
i,m̄ + σ zi,mσ

z
i,m̄) (6)

The first term (transverse part) represents spin-flip scattering and the second one (longitudinal)
an ‘Ising-like’ exchange, which tends to stabilize spontaneous ferromagnetic order. Many
calculations on multi-band Hubbard models only consider the Ising term and neglect the spin-
flip part of the interaction [10,22–24]. In this paper, we want to trace both parts of the interband
interaction (6) with identical quality.

It goes without saying that (2) and (4) do not represent the full set of local Coulomb
interactions between d electrons. Our previous studies [2, 6, 7, 27], however, have given
evidence that they are most important for treating magnetic phenomena in transition metals.
The final goal of our investigation will be the more or less quantitative description of real
substances such as Fe [6], Co [7], Ni [2], and Gd [28]. For this purpose we combine many-
body model methods with ‘ab initio’ band-structure calculations. By definition, the underlying
many-body model incorporates only those interactions which are believed to be decisive for the
collective magnetism with respect to temperature dependencies and typical correlation effects,
and which are probably not properly taken into account by usual LSDA treatments. According
to our previous calculations, the interactions (2) and (4) should be most important while, e.g.,
the interband Coulomb interaction (denoted byŪ in our previous studies [6]) turns out to be
not that decisive for the band ferromagnetism of transition metals. It can be assumed that this
part of the local Coulomb interaction is sufficiently well covered by an LSDA calculation.
Our present model investigation is to be understood in this sense. Instead of tackling a more
complicated, but probably still insufficient Hamiltonian, we aim at a better understanding of
those interactions which might be the roots of the phenomenon offerromagnetism, without
referring to a real system. The description of more realistic systems seems possible by a
combination of our model study with LDA calculations along the lines of references [2,6,7],
which is intended for the future.

In the following section, we introduce aneffective-medium methodto decompose the
complicated many-body problem of the Hamiltonian (1) into two separately solvable problems
of simpler structure. After that we introduce the approximations that lead us to a fully self-
consistent solution for the two-band model. In section 3, we present and discuss our results.

2. Theory

2.1. The effective-medium approach

Even though we restricted consideration to a rather simple model Hamiltonian, we need a
convincing approximation method to solve the problem. We propose a method based on an
effective-mediumansatz. Thisansatzwill map the original problem of Hamiltonian (1) onto
a set of simpler model Hamiltonians, for which well-tested standard approximations exist.
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These can be put together in an appropriate way to get a solution of the original problem. This
method is generalizable to many different models; a similar approach applied to the periodic
Anderson model was recently published [29].

We want to introduce the method using the two-band Hamiltonian (1) with the two
interaction termsHU andHJ . The self-energy6k,m,σ (E) can be defined using the equation
of motion of the single-electron Green’s functionGk,m,σ (E) = 〈〈ak,m,σ ; a†

k,m,σ 〉〉:
EGk,m,σ (E) = h̄ + εm(k)Gk,m,σ (E) + 〈〈[ak,m,σ ,HU +HJ ]−; a†

k,m,σ 〉〉
= h̄ + εm(k)Gk,m,σ (E) +6k,m,σ (E)Gk,m,σ (E). (7)

Using the linearity of the commutator and the Green’s function, one can define ‘self-energy
parts’:

〈〈[ak,m,σ ,HU ]−; a†
k,m,σ 〉〉 = 6(U)

k,m,σ (E)Gk,m,σ (E) (8)

〈〈[ak,m,σ ,HJ ]−; a†
k,m,σ 〉〉 = 6(J)

k,m,σ (E)Gk,m,σ (E) (9)

with

6k,m,σ (E) = 6(U)
k,m,σ (E) +6(J)

k,m,σ (E).

Assuming the knowledge of either one of these self-energy parts, one can introduce the
following effective Hamiltonians:

H
(U,η)

eff =
∑
k

(εm(k) +6(J)
k,m,σ (η))a

†
k,m,σ ak,m,σ +HU (10)

H
(J,η)

eff =
∑
k

(εm(k) +6(U)
k,m,σ (η))a

†
k,m,σ ak,m,σ +HJ (11)

which formally depend on a parameterη. By solving each of these Hamiltonians for all values
of η, one can obtain the missing self-energy part using the following identities:

6
(U)
k,m,σ (E) = 6(eff,U,η)

k,m,σ (E)
∣∣
η=E (12)

6
(J)
k,m,σ (E) = 6(eff,J,η)

k,m,σ (E)
∣∣
η=E (13)

with 6(eff,U,η)
k,m,σ (E) being the self-energy of the effective Hamiltonian (10) and6(eff,J,η)

k,m,σ (E)

that of Hamiltonian (11). The introduction of the energy parameterη in the effective Hamil-
tonians (10) and (11) is necessary in order to distinguish two different kinds of energy. The
effective-medium energy parameterη should not be confused with the energy as the dynamic
variable of e.g. an equation-of-motion method for solving the corresponding partial many-body
problem. This distinction is mandatory since otherwise, the system could show unphysical
behaviour. Furthermore, for the same reasoning it is necessary to calculate expectation values
in the full system, e.g. by using the formal solution of equation (7) for the single-electron
Green’s function:

Gk,m,σ (E) = h̄

E − (εm(k) +6(U)
k,m,σ (E) +6(J)

k,m,σ (E))
. (14)

The two problems posed by the Hamiltonians (10) and (11) are strongly related to each other.
The solution of one in the form of the respective self-energy (12) or (13) is needed as input
for the other. This implies a self-consistency condition on the two self-energy parts which
can only be fulfilled in an iterative way. But the advantage of the effective-mediumansatz
is also rather obvious: the two Hamiltonians (10) and (11) have already been analysed very
well since they are both standard models of many-body theory. Model (10) is essentially the
single-band Hubbard model [8], and model (11) is known as the sf model or ferromagnetic
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Kondo lattice [30, 31]. So for both partial problems, existing approximation schemes can be
used.

For the Hubbard model, many useful approximations exist. We use the spectral density
approximation (SDA) [26, 32, 33], which has to be considered as a strong-coupling theory.
Although this choice prohibits an investigation of the small-U behaviour, its advantages are
enormous. Besides being mathematically simple and numerically reasonably fast, it has proven
to give a qualitatively correct picture of ferromagnetism in the strong-coupling regime and
compares to more sophisticated approaches [34]. It will be described in the following section.
The sf model has also attracted much interest. A very promising interpolating, moment-
conserving, equation-of-motion-decoupling scheme has been developed in references [35–37].
This method will be discussed in section 2.3. The combination of these two calculations along
the lines described above as effective-medium approach will lead us to the solution of the full
problem posed by Hamiltonian (1).

2.2. The spectral density approach

According to the effective-mediumansatz, the self-energy part6(U)
k,m,σ (E) connected with the

intraband Hubbard interaction will be calculated using Hamiltonian (10). We use the spectral
density approach (SDA) to solve this problem. This method is numerically simple and fast,
and, as shown in the limit of infinite dimensions, its magnetic properties resemble qualitatively
the quasi-exact quantum Monte Carlo calculation [18,34,38]. The SDA has been studied for
the single-band Hubbard model extensively [26, 32, 33]. In the following we will give only
a brief outline of the calculations. The starting point is the single-electron spectral density,
defined by

Sk,m,σ (E) = 1

N

∑
i,j

exp(ik · (Ri −Rj ))
1

2π

∫ +∞

−∞
dE exp

(
− i

h̄
Et

)
〈[ai,m,σ (t), a†

j,m,σ (0)]+〉

(15)

where [. . . , . . .]+ denotes the anticommutator and〈· · ·〉 the thermodynamic average. The
construction operators are taken to be in the Heisenberg time-dependent picture.

In an exact spectral-moment analysis in the limitU →∞, Harris and Lange have shown
that the spectral density essentially consists of a two-peak structure [39]. Since ferromagnetism
is widely believed to be a strong-coupling phenomenon, any reasonable approximation aiming
at ferromagnetism should contain this limiting case [34].

In the SDA, one makes the followingansatzfor the spectral density, which will turn out
to correctly reproduce the positions and weights of the quasiparticle peaks according to the
Harris and Lange calculation in the limit ofU →∞:

Sk,m,σ (E) =
∑
j=1,2

h̄α
(j)

k,m,σ δ(E − E(j)k,m,σ ). (16)

The unknown parametersE(j)k,m,σ andα(j)k,m,σ , the quasiparticle energy and the spectral weight,
can be calculated by the moment method. This means they are fitted by the use of the first four
moments of the spectral density, which represent several sum rules:

M
(n)
k,m,σ =

∫ +∞

−∞
dE EnSk,m,σ (E) (17)

and which can be calculated directly from the Hamiltonian:

M
(n)
k,m,σ = 〈[[ . . . [ak,m,σ ,H ]−, . . . , H ]−︸ ︷︷ ︸

n−fold commutator

, a
†
k,m,σ ]+〉. (18)
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This procedure is identical to the one performed in [26] for the conventional Hubbard problem.
An explicit description of the calculation is presented there. As a result one obtains a self-
energy of the following structure:

6
(U)
k,m,σ (E) = U〈ni,m,−σ 〉

E − Bm,−σ − Fk,m,−σ
E − Bm,−σ − Fk,m,−σ − U(1− 〈ni,m,−σ 〉) . (19)

The decisive terms areBm,−σ and Fk,m,−σ which distinguish this self-energy from the
Hubbard-I solution [8]. There these terms would be replaced simply by the centre of gravity
of the appropriate Bloch band.Bm,−σ and Fk,m,−σ mainly consist of higher correlation
functions. They may provoke a spin-dependent shift and/or deformation of the bands and
may therefore be responsible for the existence of spontaneous magnetism [26, 34, 40]. The
k-dependent termFk,m,−σ seems to be of minor importance for the magnetic behaviour [26].
Since

∑
k Fk,m,−σ = 0, it does not change the centre of gravity of the density of states. It is

mainly responsible for a deformation and narrowing of the bands. We have therefore neglected
this term in the following calculations. The termBm,−σ has the following structure:

Bm,σ = 1

N

∑
i,j

(∑
k

exp(−ik · (Ri −Rj ))εm,σ (k)

)
〈a†
i,m,σ aj,m,σ (2ni,m,−σ − 1)〉 (20)

with εm,σ (k) = εm(k) + 6(J)
k,m,σ (η). Fortunately, this two-particle correlation function is

accessible via the single-electron spectral density; no higher Green’s functions have to be
calculated [41]. One obtains the following expression:

Bm,σ = 1

N

∑
k

εm,σ (k) +
1

〈nm,σ 〉(1− 〈nm,σ 〉)
1

Nh̄

∑
k

(
εm,σ (k)− 1

N

∑
k′
εm,σ (k

′)
)

×
∫ +∞

−∞
dẼ

Sk,m,σ (Ẽ)

eβ(Ẽ−µ) + 1

(
2

Um
(Ẽ − εm,σ (k))− 1

)
. (21)

This leads to a set of equations which can be solved self-consistently. Despite its obvious
restrictions, e.g. the complete neglect of quasiparticle damping, the two-pole approximation
together with the moment method is able to describe the magnetic properties of the Hubbard
model surprisingly well [26, 38]. Since the subject of this paper is the influence of the spin-
flip processes on the ferromagnetism introduced by the on-site intraband Hubbard interaction,
this choice of a numerically simple procedure here seems reasonable. However, one should
bear in mind that conceptually, the SDA is a strong-coupling method which certainly becomes
questionable for intermediate to weak couplings. Consequently, we restrict all of the following
considerations to situations withUm substantially larger than the free bandwidthWm.

2.3. The rigid-spin approximation

Next, we have to solve Hamiltonian (11). The approximation scheme for this effective problem
has to be chosen very carefully since our investigation aims at effects directly induced by the
interaction (4). There is no standard method for solving this model beyond mean-field level.
In the following, we want to apply a non-perturbative, moment-conserving, self-consistent
method which explicitly includes spin-exchange scattering.

The basis of the approximation scheme is the similarity between the interaction (4) and the
well-known sf or Kondo-lattice model. The difference of the two models lies in the electron
spin operatorσi,m̄. In our model, this operator is built from electron construction operators. In
the Kondo model, the charge degrees of freedom of the f spin have been projected out. Only
a pure spin operator remains. A formal equivalency between the two models can be reached
if one artificially fixes the operatorσi,m̄ to its spin degrees of freedom. This can be done in
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an iterative way for both bands separately. This means that for calculating the self-energy
for bandm one has to fix the spin operator of the other band (σi,m̄) and vice versa. Thus no
constraints are introduced concerning the quantum mechanical attributes of the partial electron
system under consideration, such as the indistinguishability of the particles. In our opinion,
the namerigid-spin approximation(RSA) is an appropriate for this method.

Now we can apply an appropriate approximation developed for the sf model. We use
a moment-conserving, self-consistent, interpolating, equation-of-motion-decoupling scheme
[35–37]. A discussion of the necessary approximations and their implications can be found
in [35–37], so we can restrict ourselves to a short summary in this paper. In the equation of
motion for the single-electron Green’s functionGi,j,m,σ (E) = 〈〈ai,m,σ ; a†

j,m,σ 〉〉:

EGi,j,m,σ (E) = h̄ +
∑
l

(∑
k

exp(ik · (Ri −Rl))(εm(k) +6(U)
k,m,σ (η))

)
Gl,j,m,σ (E)

−1

2
J
(
Fi,i,j,m,σ (E) + zσ0i,i,j,m,σ (E)

)
(22)

two higher Green’s functions are introduced, the ‘spin-flip’ functionFi,l,j,m,σ (E) =
〈〈σ−σi,m̄ al,m,−σ ; a†

j,m,σ 〉〉 and the ‘Ising’ function0i,l,j,m,σ (E) = 〈〈σ zi,m̄al,m,σ ; a†
j,m,σ 〉〉. For

these two Green’s functions, the respective equations of motion can be obtained without
difficulty. In each of them, new Green’s functions are introduced. For these we carefully
apply a sophisticated decoupling scheme. The central idea is to express all local higher Green’s
functions in the equations of motion of the spin-flip and Ising function by ‘ansatze’ interpolating
between several non-trivial limiting cases, such asS = 1

2, ferromagnetic saturation of one band,
empty band, and full band. The corresponding interpolation parameters can be obtained using a
moment method similar to the one described in section 2.2. Within this approximation scheme
we obtain a self-energy of the following structure:

6(J)
m,σ (E) = J 〈σ zi,m̄〉 + J 2F(6(J )

m,σ (E), 〈nm,σ 〉, 〈σ +
i,m̄σ

−
i,m〉, . . .). (23)

The first term corresponds to the mean-field solution. The second part corresponds to higher-
order terms inJ . The complex functionalF depends on several correlation functions,
such as the interband spin-exchange correlation〈σ +

i,m̄σ
−
i,m〉 and the interband Ising correlation

〈σ zi,m̄σ zi,m〉, the self-energy part6(J)
m,σ (E), and of course, via the effective medium, the intraband

self-energy part6(U)
m,σ (E). All correlation functions as well as the self-energy parts have to be

determined self-consistently. The self-energy part6(J)
m,σ (E) isk-independent due to the neglect

of magnonic excitation energies, which are small compared to the electronic excitations under
consideration [36]. It is worth mentioning that this method can be continued smoothly to
the exactly solvable non-trivial limiting case of one electron in a ferromagnetic saturated
background of f spins.

3. Results and discussion

In this section we present the results obtained by the theory described above. The results are
compared with the usual mean-field calculation for the spin-exchange interaction. The two-
band model under consideration consists of two bandsm = {0, 1} of unit width (W{0,1} = 1.0),
thus defining the energy unit used in this paper. The bands are not degenerate; the centres
of gravity are shifted by 0.1. As an example we choose tight-binding bcc free densities of
states [42]. In the single-band Hubbard model, the existence of ferromagnetism depends on
the lattice structure, as has been shown by various methods (stability of the Nagaoka state [16],
SDA [38], QMC simulations ford = ∞ [43]). From these investigations, it follows that the
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system has a stronger tendency towards ferromagnetism in non-bipartite (e.g. fcc) lattices. It
seems reasonable to believe that this will also hold for the two-band model, although we did
no systematic analysis of the lattice dependence.

One expects the local intraband Coulomb matrix elementU to be large whereas the
interband exchange coupling constantJ could be one order of magnitude smaller. As
mentioned above, the SDA which we use to find the intraband self-energy part6

(U)
k,m,σ (E)

is basically a strong-coupling theory. In the large-U regime, however, magnetic key quantities
such as the Curie temperature and theT = 0 moment are already saturated, i.e. no longer
U -dependent (see e.g. figure 11 in [26]). More interesting is theJ -dependence. We therefore
restrict consideration to the representative value ofU = 5 and inspect in detail the influence
of the interband interactionJ . Furthermore, the evaluation is confined toT = 0, although the
theory of course holds for finite temperatures, too.

3.1. TheJ = 0 case

In the case of vanishing interband coupling,J = 0, the situation is identical to two separate
single-band Hubbard models which are only coupled by a common Fermi energy. It determines
the respective partial band occupationsn{0,1} according to the total number of electrons per site
ntot = n0 + n1. For the single-band Hubbard model, the existence of ferromagnetism has long
been a matter of controversial discussion, but recent results confirm its stability for certain
parameter regimes [15,18]. The SDA has turned out to be able to reproduce the QMC results
in this limiting case on a qualitative level [34,38].

First, let us recall a result obtained within a single-band Hubbard model. In figure 1, the
dependence of the magnetization on the electron density (occupation number) is plotted. For
n < n(Hub)

c ≈ 0.56 the system is paramagnetic; only forn > n(Hub)
c is ferromagnetic ordering

possible. With increasingn, the system becomes quickly saturated. Antiferromagnetic
ordering occurs only in the very vicinity of half-filling (n = 1.0) which we will never consider
in the following discussion. More information on ferromagnetism in the single-band Hubbard
model can be found in [18,19,26,33,38,41,44].

0.0 0.2 0.4 0.6 0.8 1.0
n

0.0

0.2

0.4

0.6

0.8

1.0

m

m=n

Figure 1. Magnetizationmas a function of band occupationn for a single-band Hubbard model with
U = 5, T = 0 on a bcc lattice. The dotted line indicates saturation (m = n). Antiferromagnetic
ordering is expected close to half-filling (n = 1), which is not considered in this paper. Due to
particle–hole symmetry, it is sufficient to investigate the region 0< n < 1 .

In figure 2, the magnetization as a function of the electron density is plotted for the two-
band situation. Together with the total magnetizationmtot, the partial occupation numbers and
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0.6 0.8 1 1.2 1.4 1.6 1.8
ntot

0

0.5

1

1.5

m
,n

m0

m1

mtot

n0

n1

ntot

Figure 2. Magnetizationm as a function of total occupationntot for a two-band system (solid
curve: total magnetization; dashed curve: polarization of the lower band (m = 0); chain curve:
polarization of the upper band (m = 1)). The thin curves represent the partial occupation numbers
per band. System parameters:U = 5, J = 0, T = 0.

polarizations per band are shown. The interband interaction is still set to zero (J = 0). As
already mentioned above, the two bands are coupled only via the chemical potential. Ferro-
magnetic order sets in in bandm = 0, the lower band, when this band reaches a critical
occupation ofn0 = n

(J=0)
c,0 ≈ 0.63 > n(Hub)

c which is the case for a total occupation of

ntot ≈ 0.98. The critical electron density of the lower bandn(J=0)
c,0 is larger than in the

single-band case (n(Hub)
c ). Even though the upper band is neither explicitly coupled to the

lower band nor ferromagnetic by itself, it has an influence on the paramagnetic–ferromagnetic
transition of the lower band. This can be understood, since the upper band can act as source
or sink of electrons for the lower band. With the onset of ferromagnetism, a spin-dependent
band splitting takes place. This provides for a rearrangement of electrons between the bands
due to the chemical potential being the same for the two bands. Now, if the system ‘tries’
to order ferromagnetically, when bandm = 0 reaches the ‘single-band critical occupation’
of approximatelyn0 ≈ 0.56, the corresponding shift of the densities of states will make
the ferromagnetic phase unstable. This happens until the real critical value of the two-band
situation,n0 = n

(J=0)
c,0 ≈ 0.63, is reached. This effect is analogous to the findings in [45],

where a similar situation was examined using a Stoner-like theory.

3.2. Thentot -dependency of the magnetization

Let us focus on the interband exchange interaction. Figure 3 shows, like figure 2, the
magnetization as a function of the electron occupation but with finiteJ = 0.2. On the
left-hand side, calculations were made using the mean-field approximation for the interband
exchange self-energy part; on the right-hand side the rigid-spin approximation as explained in
section 2.3 was applied.

The mean-field result is easily understood: when the lower band reaches a critical occ-
upation numbern0 = n(mf)

c,0 ≈ 0.50< n
(J=0)
c,0 , a transition to a ferromagnetic state occurs. Now

the interband exchange in the mean-field approximation will provide for a rigid spin-dependent
shift of them = 1 quasiparticle bands proportional to the magnetization of the lower band.
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Figure 3. As figure 2, but with finiteJ = 0.2. Left-hand side: the interband exchange interaction
in the mean-field approximation; right-hand side: the interband exchange interaction in the RSA.

This induces a polarization of the upper band as well. The same mechanism now works as
a feedback on the lower band, increasing the magnetization even more. The lower band thus
becomes quickly saturated.

When analysing the same situation using the rigid-spin approximation, the picture is
modified in a rather drastic way. The onset of ferromagnetism is indicated by a critical
occupation for the lower bandn(RSA)

c which is only a little larger thann(mf)
c . But the polarization

of the upper band is much weaker than in the mean-field case. And furthermore, the lower
band never reaches saturation. The latter is not a result of the weak polarization of them = 1
band, but the two effects have the same origin. Continuous spin-flip scattering prohibits the
lower band from reaching saturation. These processes, in addition to the generally stronger
quasiparticle damping, also reduce the magnetic polarization of the upper band.

3.3. TheJ -dependence of the magnetization

Next, we want to investigate theJ -dependence of the magnetization. This turns out to yield
unexpected, non-trivial results. Figure 4 shows the magnetization as a function ofJ for fixed
U = 5 andntot = 1.0. In figure 5, the behaviour for very smallJ is plotted together with
results obtained using mean-field approximation for the interband exchange, and, finally, the
corresponding quasiparticle densities of states are plotted in figure 6. For the chosen total
occupation numberntot = 1.0, the lower band is already ferromagnetically ordered forJ = 0,
whereas the upper band is still paramagnetic (see figure 2).

The magnetization curve in figure 4 can be separated roughly into three regions. For very
smallJ the magnetization rises (region A); for intermediateJ it decreases (region B); and it
shows a re-entrant behaviour for the largestJ under consideration (region C).

3.3.1. Region A. The first of these regions is characterized by an increasing magnetization
as seen more clearly in figure 5. There, additionally to the RSA result, the mean-field curves
are plotted. These are simply understood; any finiteJ will induce magnetic polarization into
the upper band, and, via a feedback, push the lower band into saturation. Bandm = 1 will
become more and more polarized, finally reaching saturation, too (not plotted in figure 5). The
same effect can be seen in the RSA calculation, which is, in first order ofJ , identical to the
mean-field result.
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Figure 4. Total magnetizationm (solid curve) and partial polarization of the two bands (dashed
curve: lower band (0); chain curve: upper band (1)) as functions of the interband coupling constant
J for fixed total occupationntot = 1.0 andU = 5, T = 0.
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Figure 5. As figure 3, but zoomed to small values ofJ . Additionally, the results of the mean-field
calculation are plotted (thin curves).

3.3.2. Region B. For J ≈ 0.05, which is still a very small parameter, deviations from the
mean-field result are already quite strong. This leads to the second regime in figure 4. Here,
the magnetization decreases, first slightly, but with increasingJ more and more strongly. In
this parameter regime, the higher-order contributions inJ to the self-energy become more
and more important. The connection between the reduction of the magnetization and spin-flip
processes becomes obvious from a comparison with the conventional sf model. The important
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Figure 6. Quasiparticle densities of states (QDOS) for certain values ofJ for the same system
parameters as in figure 3 with the chemical potentialµ = 0. Them = 0 bands are drawn as solid
curves, them = 1 quasiparticle bands as dashed curves. The spin-up and spin-down QDOS are
plotted separately as indicated.

observation is the onset of a small dip in the quasiparticle densities of states (QDOS) with
increasingJ (figure 6). This dip is on a much smaller energy scale than the Hubbard splitting,
which is also clearly visible in figure 6.

To understand this feature, we want to relate it to a feature known from the conventional sf
model. There, a band splitting can occur for intermediate to large values ofJ . The size of the
gap scales roughly withJ . The physics causing this gap can be understood best by examining
the exactly solvable special case of one electron in a saturated spin background [36, 46]. In
this case two different elementary excitations can be observed. One represents the scattering
of an electron accompanied by the emission of a magnon, whereas the other can be connected
with a bound state of an electron with a cloud of magnons. The latter manifests itself in the
spectral density by a delta-like peak splitting of the scattering part for large enough values of
J . The corresponding quasiparticle is called a magnetic polaron [36]. For the general case
of the sf model, i.e. for finite electron density and a not fully polarized spin system, a similar
band splitting due to the same two elementary processes will occur for large enough values of
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J in both spin-resolved sub-bands [37]. The dip seen in the QDOS of figure 6 is a precursor
to the magnetic-polaron-induced band splitting.

The reduction of the magnetization originates clearly from the spin-flip terms in the
Hamiltonian. A further test is the artificial neglect of quasiparticle damping achieved by setting
=6σ(E) = 0. Even then, a reduction, though smaller, of the magnetization with increasingJ is
found. So, additionally to the generic damping effects, explicit spin-flip scattering depolarizes
the system.

3.3.3. Region C. Finally, one observes a re-entrant behaviour of the ferromagnetic ordering in
figure 4, the origin of which is not completely clear. One possible mechanism for supporting
magnetic order would be an RKKY-like interaction mediated by the interband interaction
(4). The re-entrant behaviour would indicate that only forJ & 0.45 is the effective RKKY
interaction strong enough to have an effect. To support our proposal, we have performed
a calculation for the case ofU = 0 and finiteJ . Even for these more or less unphysical
parameters, we find stable ferromagnetic solutions. But, as in the finite-U case, these only occur
for relatively large values ofJ & 0.64. So even this artificially restricted model without direct
Coulomb interaction shows similar behaviour, which is, of course, quantitatively modified in
the more realistic model with finiteU .

How this proposed mechanism is related to an enhanced stability of ferromagnetism due
to the two-band situation found in [25] is an interesting, but open question.

4. Conclusions

In this paper, we have analysed a special multi-band Hubbard model which contains the
two interaction terms believed to have the biggest influence on the stability of ferromagnetic
ordering.

Our model (1) is clearly insufficient to describe the rich physics of transition metals. But
the same applies probably to any other model Hamiltonian which is still tractable within many-
body theory. However,ab initio calculations such as those of density functional theory applied
within the local density approximation (LDA) appear to underestimate just those correlation
effects which seem to be decisive for phenomena like ferromagnetism. A proper combination
of LDA calculations with a many-body treatment represents a promising way to solve these
difficulties. The LDA calculation accounts for all interactions on a mean-field level; the many-
body treatment should be restricted to just the most important correlations. We believe that the
model (1) contains in this sense those interactions whose contributions beyond the mean-field
level have the biggest impact on magnetism. A combination of LDA calculations with the
model (1) using a simpler approximation for the exchange part yields very good agreement
with experimental findings [2,3,6,7]. For example, by fitting the interaction constantsU and
J to ground-state properties, the Curie temperature can be calculated astonishingly accurately.

In this paper, we introduced a more sophisticated approximation scheme, which is
especially an improvement on the exchange interaction part of model (1). Our analysis was
based on the fact that the intraband Hubbard interaction alone is able to form ordered magnetic
moments in a band (itinerant magnetism). We investigated the influence of interband exchange
coupling, often referred to as Hund’s rule coupling, on the stability of ferromagnetism. Only
for very small values ofJ , the corresponding interband coupling constant, can we verify the
mean-field result which leads always to an enhanced stability of spontaneous ferromagnetism.
ForJ ≈ 0.1, which we call intermediate coupling, the magnetization is already suppressed by
spin-flip scattering (using the free bandwidth as the energy scale:W = 1). With increasing
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J , the ferromagnetic order almost vanishes. The re-entrant behaviour found for even larger
J might be due to an RKKY-like ordering mechanism mediated by the interband interaction
(4). The regime ofJ most often attributed to transition metals is that of intermediate coupling
strengths. Our results indicate that the influence of the spin-flip processes can manifest itself
in a rather dramatic reduction of the magnetization.
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